Graph Memory Networks for Molecular Activity Prediction

نویسندگان

  • Trang Pham
  • Truyen Tran
  • Svetha Venkatesh
چکیده

Molecular activity prediction is critical in drug design. Machine learning techniques such as kernel methods and random forests have been successful for this task. These models require fixed-size feature vectors as input while the molecules are variable in size and structure. As a result, fixed-size fingerprint representation is poor in handling substructures for large molecules. Here we approach the problem through deep neural networks as they are flexible in modeling structured data such as grids, sequences and graphs. We train multiple BioAssays using a multi-task learning framework, which combines information from multiple sources to improve the performance of prediction, especially on small datasets. We propose Graph Memory Network (GraphMem), a memory-augmented neural network to model the graph structure in molecules. GraphMem consists of a recurrent controller coupled with an external memory whose cells dynamically interact and change through a multi-hop reasoning process. Applied to the molecules, the dynamic interactions enable an iterative refinement of the representation of molecular graphs with multiple bond types. GraphMem is capable of jointly training on multiple datasets by using a specific-task query fed to the controller as an input. We demonstrate the effectiveness of the proposed model for separately and jointly training on more than 100K measurements, spanning across 9 BioAssay activity tests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Providing a Link Prediction Model based on Structural and Homophily Similarity in Social Networks

In recent years, with the growing number of online social networks, these networks have become one of the best markets for advertising and commerce, so studying these networks is very important. Most online social networks are growing and changing with new communications (new edges). Forecasting new edges in online social networks can give us a better understanding of the growth of these networ...

متن کامل

Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension

Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...

متن کامل

پیشگویی پیوند در شبکه های اجتماعی با استفاده از ترکیب دسته بندی کننده ها

Abstract Link prediction in social networks is one of the most important activities in analysis of such networks. The importance of link prediction in social networks is due to its dynamic nature. While members and their relationships (links) in such networks are continuously increasing, links may be missed due to various reasons. By predicting such links, the possibility of extension, compl...

متن کامل

Using an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks

Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...

متن کامل

Providing a Simple Method for the Calculation of the Source and Target Reliabili- ty in a Communication Network (SAT)

The source and target reliability in SAT network is de- fined as the flawless transmission from the source node to all the other nodes. In some references, the SAT pro- cess has been followed between all the node pairs but it is very time-consuming in today’s widespread networks and involves many costs. In this article, a method has been proposed to compare the reliability in complex networks b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1801.02622  شماره 

صفحات  -

تاریخ انتشار 2018